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STUDIES IN STATISTICAL SIGNAL PROCESSING

This is a final report on Contract AFOSR-88-0327, for the period of July 1, 1988

to June 30, 1990. Section 1 provides a brief overview of our work, while Sections 2-5

describe in some detail our recent results on efficient factorization of structured matrices,

recursive layer peeling, recursive state-space synthesis and wavelet representations.

1. INTRODUCTION

The primary objective of our research is to develop efficient and numerically stable al-

gorithms for nonstationary signal processing problems by understanding and exploiting

special structures, both deterministic 'and stochastic, in the problems. We also strive

to establish and broaden links with related disciplines, such as cascade filter synthesis,

scattering theory, numerical linear algebra, and mathematical operator theory for the

purpose of cross fertilization of ideas and techniques. These explorations have led to new

results both in estimation theory and in these other fields, e.g., to new algorithms for

triangular and QR factorization of structured matrices, new techniques for root location

and stability testing, new realizations for multiple-input/ multiple-output (MIMO) trans-

fer functions, and new recursions for orthogonal polynomials on the unit circle and the

real line as well as on other curves. (J ")

For several years, the guiding principle in these studies has been the concept of gen-

eralized displacement structure (Lev-Ari and Kailath (1986)), which generalized and

subsumed our earlier work on Toeplitz-oriented displacement structure (Kailath, Kung

and Morf (1979); see also Lev-Ari and Kailath (1984)). A related notion of displace-

ment structure has also emerged from recent work of Heinig and Rost (1984,1987) of

East Germany. While they are aware of our work, and make some attempts to relate to

it, their approach and methodology are significantly different from ours. In particular,

they focus only on the problem of inversion of structured matrices via algebraic methods,



while our work has primarily addressed triangular factorization of such matrices, and our

approach is based on a generating function characterization of matrices. The triangular

factorization probl-m is in many senses more fundamental than inversion, and has more

copsequences for signal processing, linear algebra, operator theory and other fields. In

fact, recently we were able to reduce the inversion problem for structured matrices to

the factorization of certain block-matrices with structured blocks (see Chun and Kailath

(1989)). This result also confirms and clarifies- an earlier observation [see Lev-Ari and

Kailath (1984)] on the relation between efficient inversion and efficient factorization of

structured matrices: only some of the structured matrices that admit an efficient factor-

ization procedure can also be efficiently inverted.

The generating function approach also suggests a natural system-theoretic interpre-

tation of the theory, which allows a study of various problems in system theory, such as

minimal realization, Pad6 approximation, control design, and a variety of root distribu-

tion (stability) problems for polynomials. Perhaps the most prominent system-theoretic

aspect of our efficient factorization techniques is that they can be interpreted as recursive

identification procedures for certain lossless cascade models. For instance, the classical

Schur algorithm is also a procedure for step by step identification and 'peeling' of the

layers of a transmission-line with a piecewise constant characteristic impedance [Bruck-

stein and Kailath (1987)]. Such layered models have been used for quite some time in oil

exploration and in marine seismography. They involve two scalar signals propagating in

opposite directions; consequently, the characteristics of the model can be captured by a

single scalar input-scattering function. Schur's original formulation of his algorithm was,

in fact, in terms of this scattering function.

We have recently begun to extend our methods to multichannel cascade models, which

involve involve multiple signals propagating both in the forward and in the opposite

(backward) direction. Since such models are represented by matrix scattering functions,

it would seem that the corresponding layer-peeling procedures need to be rederived in
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matrix (or block) form. This is certainly possible (see, e.g., Delsarte, Genin and Kamp

(1979)), but results in-the introduction of computation-intensive matrix operations, such

as the evaluation of matrix square roots. In contrast to this approach, we have succeeded

in obtaining layer-peeling procedures that involve only elementary (2 x 2) circular and hy-

perbolic rotations, and therefore require only scalar computations. We have achieved this

by incorporating the notion of modular decomposition, which has been used in the past to

decompose the multichannel Levinson algorithm (see Sakai (1982)) and the deterministic

recursive-least-squares lattice filter (Lev-Ari (1987)). Our modularly-decomposed filters

can be implemented in pipelined parallel processing hardware (such as systolic arrays),

with the throughput being independent of the number of channels (i.e., the number of

forward and backward signals flowing through the model).

Moreover, our modular formulation makes it possible to extend the Schur algorithm to

matrix functions with poles within the unit disc, which arise in various control problems

and in particular in model-order reduction with Hankel norm (see, e.g., Genin and

Kung (1981)). Such an extension would have been impossible in the block-formulation

of Delsarte, Genin and Kamp (1979); and it would be quite difficult to obtain even in

the 'tangential' formulation of Dewilde and Dym (1981). Moreover, we have applied the

same approach to extend in a similar way also the Nevanlinna algorithm, which includes

Schur's algorithm as a particular case (i.e. , all extraction points are at the origin).

While the Schur and Nevanilnna algorithms synthesize lossless cascade models from

their input scattering function, there has been also much work done on the synthesis of

lossless arrays from state-space representations (see, e.g., Genin et al. (1983), Roberts

and Mullis (1987)). This approach involves more computation, but results in a greater

flexibility in choosing the array configuration (which need not be a cascade). In addition,

it provides convenient analytical tools for the analysis of finite precision effects such as

overflow oscillations and roundoff noise.

We have recently formulated a new (recursive) approach to lossless cascade synthesis
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from state-space representations. Our approach not only requires significantly less com-

putations than the traditional method (which is based on conversion to balanced form),

but also leads in a natural way to a matrix-domain formulation of the generalized Schur

algorithm for triangular factorization of structured matrices. This new formulation sub-

sumes most previously published procedures for factorization of structured matrices and.

in particular, the matrix-domain formulation of Chun and Kailath (1989, 1990) and the

transform-domain formulation of Lev-Ari and Kailath (1984, 1986). Finally, the state

space approach is also helpful in describing the relation between the cascade models as-

sociated with structured matrices (as described in Lev-Ari and Kailath (1986)) and the

models associated with the inverses of these matrices. These 'inverse' models are the

starting point for the derivation of the Levinson algorithm and the Gohberg-Semencul

formula for structured matrices other than Toeplitz.

Another application of the state-space approach has been presented by Glover (1984)

in the context of model-order reduction. We have recently begun to explore the possibility

of his method with our results on multichannel Schur algorithms in order to obtain a

computationally-efficient procedure for determining a modular realization of the reduced-

order filter.

So far we have considered only (linear) models with time-invariant parameters. In

order to be able to characterize processes with stable (i.e., bounded) persistently non-

stationary dynamics we need to allow models with time-varying parameters. For instance,

processes with periodically-varying correlation (i.e., rt+p,.r+p = rt,, for all t, s) involve

models with periodically-varying coefficients. One way to overcome such complications is

to consider representations (.f processes as linear combinations of known functions, simi-

lar to the Karhunen-Loeve representation. However, we focus on basis functions that are

independent of the statistics of the process in consideration. In particular, we have con-

sidered basis functions derived from the theory of wavelets (see, e.g., Daubechies (1988),

Mallat (1989)). We have characterized the asymptotic behavior of such representations
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with increasing level of resolution and have established (so far only for periodically-

correlated processes) the correlation structure of the representation coefficients.

2. FACTORIZATION OF STRUCTURED MATRICES

Our early work on factorization ard inversion of Toeplitz and close-to-Toeplitz matrices

leo us to the observation that for certain matrices the displacement matrix

VzR := R - ZRZ*, Z = [6ij+1] ,j=o

has low rank. Notice that Z has unity elements on the first subdiagonal and zeros

elsewhere. Consequently, the displacement matrix VzR is the difference between the

matrix R and the matrix ZRZ* obtained by displacing R one step along the main

diagonal. In particular, the displacement rank (i.e., the rank of VzR) is 2 for both

Toeplitz matrices and inverses of Toeplitz matrices. We have shown in previous work

(largely supported by AFOSR) that the displacement concept is a key tool for developing

fast algorithms of many kinds, including factorization and inversion of Toeplitz and near-

Toeplitz matrices, as well as fast (generalized Levinson and Schur) algorithms for solving

linear systems with such coefficient matrices. Not surprisingly, these results led naturally

to cascade orthogonal structures for the prediction of nonstationary processes (Lev-Ari

and Kailath (1984)). We have also found that the same concept is tightly connected

to the more general problem of cascade filter synthesis in network theory and digital

filtering as well as to a variety of inverse scattering problems (some references are Rao

and Kailath, (1984, 1985), Bruckstein and Kailath (1987), Lev-Ari (1988)).

Later we extended the concept of displacement structure to a very broad family

of structured matrices, including Hankel matrices and their inverses, sums of Toeplitz

and Hankel matrices and several others (Lev-Ari and Kailath, (1986)). The generalized

displacement of a matrix R, is defined as d(Z, Z)R where

N

d(A,B)R : dk,,AkR(B*), (1)
k,l=O
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and the asterisk (,) denotes Hermitian transpose (complex conjugate for scalars).

The concept of displacement structure and its properties are more conveniently de-

scribed in terms of generating functions. The generating function of a matrix R is a

power series in two complex variables, viz.,

R(z,w) :=[1 z z2 ... ]R[1 w W2 ... ] (2)

The displacement d(Z, Z)R of a matrix has the generating function d(z, w)R(z, w), where

N
d(z, w) = E dk,,zk(w*) '  (3a)

k,l=O

Thus the generating function of a Hermitian matrix with a displacement structure has

the form

R(z,w) = G(z) J G*(w) (3b)
d(z,w)

where J is any constant nonsingular Hermitian matrix. The triple {d(z, w), G(z), J}

is called a generator of R(z, w), since it uniquely determines the generating function

R(z, w).

We have extended our previous work (Lev-Ari and Kailath (1984)) on efficient factor-

ization of matrices with displacement structure to accommodate the generalized displace-

ment d(Z, Z)R, and we have shown (Lev-Ari and Kailath (1986), Lev-Ari (1989)), that

efficient factorization of R is possible if, and only if, there exist power series a(z), O(z)

(with arbitrary radii of convergence) such that

d(z, w) = a(z)a*(w) - p(z)*(w) (4)

To obtain the factorization of R one has to propagate the recursion (with Go(z) = G(z))

(z - (i)Gj+1(z) = Gi(z)Gi(z) i = 0,1,2,... (5)

where O,(z) is specified in terms of G,((,) (see, e.g., Lev-Ari and Kailath (1986), Lev-Ari

(1989)). The lossless (p+ q)-port O,(z) can be decomposed into a constant (memoryless)

part, which has p + q inputs/outputs and a scalar (single-input/single-output) dynamic
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part (Lev-Ari (1989)). This decomposition is particularly simple when d(O, 0) # 0, as

described in Fig. 1.

Z (kd) o Co W - ce' ()

Figure 1. Decomposition of ®O(z) (p = 1 = q, ( = 0).

The standard choice of the extraction points (,}, i.e., (i = 0, produces triangular

factorizations; other choices can be useful in root-location and filter synthesis procedures

(see, e.g., Deprettere and Dewilde (1980), Vaidyanathan and Mitra (1984)). This algo-

rithm requires O(n 2) computations to factor a structured n x n matrix R in the form

R = LDL., in contrast to the conventional LDL* algorithm which requires O(n 3) oper-

ations to factor an arbitrary n x n matrix. The i-th element of the diagonal matrix D

and the i-th column of the lower triangular matrix L are determined by the coefficients

of the power series expansion of Gj(z).

3. RECURSIVE LAYER PEELING

The fundamental factorization procedure (5) for structured matrices, viz.,

(z - =4Gj+i(z) Gi(z)Oj(z)

is, at the same time, also a layer-peeling procedure. Starting with Go(z), which we can

interpret as boundary data for a layered medium, we identify an elementary layer with

chain-scattering matrix Oo(z), then "peel" it off to obtain Gi(z), the boundary data for

the rest of the medium (with the first layer removed), and repeat the same procedure

7



again and again. Such sayer-peeling recursions have been used in cascade filter synthesis

(see, e.g., Dewilde, Vieira and Kailath, (1978); Vaidyanathan and Mitra (1984)), in

inverse scattering (Bruckstein and Kailath (1987)), zero-location (Lev-Ari, Bistritz and

Kailath (1987)), and model-order reduction (see, e.g., Genin and Kung (1981)).

The classical work of Schur (1917) forms the basis for much of the subsequent work on

layer peeling procedures. Schur's algorithm associates a sequence of so-called reflection

coefficients, all with magnitude bounded by unity, with every passive scattering function,

i.e., a function f(z) that is analytic and bounded by 1 in the unit disc. In particular,

if f(z) is an all-pass function, which means that If(e'0)I = 1 for all 0, then Schur's

algorithm produces a finite sequence of reflection coefficients {k, ; 0 < i < n}, where

IkI = 1 and IkjI < 1 for 0 <i <n - 1.

Another property of the algorithm is that starting with a passive scattering function

it generates a sequence of such functions. This is the essence of the layer peeling method:

a single step of the Schur algorithm applied to a passive medium leaves a medium with

the same property, which makes it possible to apply the same step again and again. A

single step of the Schur algorithm corresponds to the removal (or peeling) of an elementary

lossless two-port. Thus, the algorithm produces a discrete transmission-line model, whose

input scattering function is f(z) (Fig. 2).

Z(ko) ki-k

f.)..----

Figure 2. Transmission-line model associated with the Schur algorithm.

In addition to the recursive characterization of passivity via the constraint on the
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magnitude of the reflection coefficients, Schur also introduced an operator-norm charac-

terization of passivity: he proved that for any function f(z) that is analytic in the unit

disc we can construct an infinite lower-triangular Toeplitz matrix whose first column

consists of the coefficients of the power series expansion of f(z), viz.,

fo

fif o 0
L(f) f2 fS (6a)

such that

sup If(z)l IIL(f)1II _ 1 (66)
IZ1<1

where IIAil 2 denotes the conventional norm of a matrix A, i.e.,

IIAi 2 := sup [[AxJl 2  (6c)

and ]Ix112 denotes the Euclidean (f 2) norm of a vector x.

Schur's algorithm was later extended by Cohn (1922) to functions with poles in the

unit disc, but only to rational "all-pass" functions, i.e., to functions f(z) of the form

f(z) = A p#(z) (7a)

where p#(z) denotes the conjugate reversal operation, viz.,

p#(z) = zdeg p() (l/z*)]" (7b)

The now well-known Schur-Cohn test associates with each such function ' a finite se-

quence of reflection coefficients, some of which have magnitudes larger than 1. Moreover,

it has been shown (e.g., using the properties of Bezot,.ians on the unit disc) that the

number of poles of f(z) = p#(z)/p(z) inside the unit-disc equals the number of singular

1Assuming p(z) has no zeros at z = 0, and applying the algorithm to f(z)/A.
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values of the matrix L(f) that are larger than [AI or, equivalently, the number of negative

eigenvalues of the following finite rank matrix,

R := IAI'1- L(f)L*(f)()

Rational allpass functions of a given degree k are members in the family Hk- of all

functions with k poles (or less) inside the unit circle, and whose magnitude is bounded

on the unit circle, i.e.,

sup If(z)! < o0
IzI=I

It turns out that the Schur-Cohn algorithm does not map the family Hk' into itself, ex-

cept when k = 0. This means that this algorithm does not admit the same layer-peeling

interpretation as the standard Schur algorithm. Nevertheless, we have found that it is

possible to modify the Schur algorithm in such a way that the resulting recursion indeed

maps the family Hk' into itself and, therefore, admits the same layer-peeling interpreta-

tion as the classical Schur algorithm. Moreover, the layers involve only elementary (2 x 2)

orthogonal and hyperbolic rotations (Ackner, Lev-Ari and Kailath (1990a)).

kI -k! ki -k!

_ - Ikq kq 2._

p-type layer (ki = fi(o)) n-type layer (ki-- i/f7(o))

Figure 3. Layers for the modified Schur algorithm

Furthermore, our modified recursion applies to every function f(z) E Hk', and not

just to allpass functions. Each layer in the resulting transmission-line model has an sign
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or 'polarity' (Fig. 3). While a p-type layer (i.e., one of positive polarity) maps Hk- into

itself, a n-type layer maps Hj? into H 1 namely, it reduces by one the number of poles

within the unit disc. Therefore, the number of n-type layers in the transmission-line

model that is generated by our modified algorithm equals the number of poles that the

function f(z) has within the unit disc. This is the key idea in the construction of efficient

procedures for zero-location and in the solution of several extension problems arising in

various control applications (Ackner, Lev-Ari and Kailath (1990a)).

In the layer-peeling procedure (5) we have the freedom of choosing the extraction

points {(,}. The flexibility in choosing these points enables us to optimize the number of

computations in the algorithm and to overcome singularities. The standard choice C, = 0

corresponds to the Schur algorithm. The general choice corresponds to the Nevanlinna

algorithm (Nevanlinna (1929)). In (Ackner, Lev-Ari and Kailath (1990b)) we extended

our results from (Ackner, Lev-Ari and Kailath (1990a)) to the Nevanlinna algorithm

and showed how to modify the recursions in the case of meromorphic functions. The

computational procedure corresponding to this case involves Newton Series expansions,

viz.,

f(z) E Tfk'k(z)
k=O

where
k-1

TIk(Z) fl(Z-
j=O

instead of the MacLaurin (i.e. , power series) expansion used in the computational form of

the Schur algorithm (see, e.g. , Kailath (1987)). Applications of the Nevanlinna algorithm

include model-order reduction and solution to several other interpolation problems arising

in control and signal processing.

Recursive layer peeling for a medium with multiple inputs and outputs involves a

generalization of the Schur algorithm to matrix-valued analytic functions. One version

of the matrix Schur algorithm (Delsarte, Genin and Kamp (1979)) requires hyperbolic

matrix rotations, which are computationally expensive since they involve the finding
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of the square root of (positive definite) matrices. Moreover, this approach cannot be

generalized to matrix functions with elements in Hk', because now it would involve

square roots of indefinite matrices.

An alternative approach to the matrix analytic case was taken by Dewilde and Dym

(1981). They extract simpler layers than in the method of Delsarte, Genin and Kamp

and, as a resulf, there is no need to compute square roots of matrices. This computational

procedure, which is known as a tangential Schur algorithm, was the starting point for our

research on layer-peeling methods for MIMO (multiple-input/multiple-output) systems.

Q(II

Q(2)

Q(3) i

CORE MODULE
L - - ---- J

Figure 4. Single layer of the transmission-line model associated with the multichannel

Schur algorithm (p = 3, q = 4)
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We have shown that the procedure of Dewilde and Dym can be transformed into

an equivalent form that involves only elementary (2 x 2) rotations (Ackner, Lev-Ari and

Kailath (1990c)). In fact, for p x q matrix scattering functions, the peeling of each layer in

our version of the algorithm is implemented by a sequence of q - 1 elementary orthogonal

rotations {Qlk); 0 < k < p - 1}, and a core module, consisting of a single-channel layer

(i.e., a memoryless lossless two-port with reflection coefficient ki, and a delay) (Fig. 4).

These operations can be easily implemented in either software or hardware.

In addition to requiring significantly fewer computations than the tangential Schur

algorithm, our version also serves to clarify the relationship between the MIMO case and

the better-known scalar or SISO (single-input/single-output) case. The MIMO procedure

differs from the scalar one only by the presence of elementary orthogonal rotations.

Thus both procedures share the same core module, which consists of a single elementary

hyperbolic rotation and a (block-) delay element.

J CORE

MODULE

Q(3) '

Figure 5. Structure of single layer in the non-analytic case
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Consequently, we are able to show that our version of the tangential Schur algorithm

can be modified to accommodate scattering functions with poles within the unit circle,

and that this modification affects only the core module (i.e., it is independent of the

number of inputs or outputs). This means that each layer still has a 'sign' or polarity,

as in the SISO case, and that the number of n-type layers coincides with the number of

Smith-McMillan poles of the given matrix scattering function. Unlike the analytic case,

we now have trivial cells (indicated by dashed boxes) both in the upper and lower parts

of the diagram (Fig. 5). This results in a total of 2P possible configurations for each

layer, in contrast to a single configuration in the (matrix) analytic case.

A single layer of our tangential Schur algorithm involves q parameters: one in the

core module and q - 1 in the preceding orthogonal rotations. In comparison, the matrix

Schur algorithm of Delsarte, Genin and Kamp (1979), viz.,

zF(z) = VI1[I - F(z)F*(O)f-X[F(z) - F(O)]!VI21

with

M1JVAI1 = I - F(O)F(O) , M;M2 = I - F*(O)F(O)

which corresponds to p layers of the tangential algorithm, has the same number of pa-

rameters (p x q) per block-step.

4. RECURSIVE STATE-SPACE SYNTHESIS

In addition to the input-output approach in recursive layer peeling, there has also been

a considerable interest in synthesis of lossless models from state-space descriptions. For

instance, this approach has been used extensively in orthogonal synthesis of digital fil-

ters: starting with a given state space model for an allpass filter, one first obtains an

orthogonal state space model of a particular (Hessenberg) form and then proceeds to ob-

tain a realization in terms of elementary (2 x 2) lossless cells via a recursive factorization

procedure (see, e.g., Roberts and Mullis (1987)). Passive transfer functions can also be
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realized in this fashion by embedding-them into allpass filters with additional inputs and

outputs. This can be accomplished either by spectral factorization, as in the method of

Rao and Kailath (1984), or by solving certain Ricatti equations (see, e.g., Desai(1989)).

To be more specific, denote the state space model associated with a given lossless

cascade model (such as the one described in the previous section) by {Ao, Bo, Co, Do}.

This means that the transfer function of the lossless cascade {Oo(z), 01(z),. .. , 0(z))

can be expressed in the form 2

Go(z)01(z) ... e)(z) = Do + Co(z-'I - Ao)-'Bo = Do + zCo(I - zAo)-'Bo (9)

Also, it can be shown that {Ao, Bo, Co, Do} is J-orthogonal, viz.,

(Ao Bo I 0 ~Ao Bo (10a)
Co Do 0 J Co Do 0 )

where

J:= diag{Ip, -Iq} (10b)

Any other (minimal) realization, say {A, B, C, D}, must berelated to {Ao, Bo, Co, Do}

via a similarity transformation, i.e.,

A=T-'AoT, B=T-'Bo, C=CoT, D=Do

It follows that the J-orthogonality relation (10) is now replaced by

where R:= TT. In particular we observe that

R- ARA* = BJB* (12)

which demonstrates the generalized displacement property of the matrix R. This ob-

servation has led Genin et al. (1983) to propose a procedure for construction of lossless

2-Recall that we use z instead of z-1 to denote a delay
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cascade model by the state space approach and starting with the displacement equation

(12). They have conjectured that their procedure gives rise to the same lossless cascade

model as the one obtained via the Schur algorithm. However, this conjecture was never

established.

The approach of Genin et al. (which is essentially the same as that of Roberts and

Mullis) involves three steps:

(i) embedding eq. (12) into a state-space model {A, B, C, D} that satisfies the loss-

lessness constraint (11).

(ii) transforming this state-space model into an equivalent balanced form.

(iii) factoring the balanced system matrix into a product of elementary (i.e. , single-

state) balanced subsystem matrices, which corresponds to a cascade decomposition

of the system described by {A, B, C, D}.

We have recently constructed an alternative synthesis procedure that completely avoids

the first two steps. Our procedure determines the same cascade realization as the one

traditionally obtained by preliminary balancing, but it does so by (implicitly) factoring

the unbalanced model {A, B, C, D} into a product of unbalanced single-state subsystems.

Furthermore, only the matrices {A, B} are required to carry out our procedure, which

makes it possible to avoid the embedding step (i).

The only computation involved in our new procedure is a matrix recursion, viz.

( 0?+ = { G, + (Ti - I) GA 'i(13)
Gi+J A9

where Go - B, fP, is the first row of Gi, W, is an arbitrary J-unitary matrix and T, is

determined (in a simple manner) by A alone (Fig. 6).
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Go IT., o j3. ---- • • • IT,1)3. G.

Figure 6. A Cascade Interpretation of the Computational Procedure (13).

This recursion is the matrix equivalent of the transfer domain recursion (5), which was

originally derived without any reference to lossless state-space models. In fact, choosing

A = L(f) where f(z) := F=o fizi makes (13) the exact equivalent of (5), in the sense

that the two are related via a suitable transform: when 4i = 0 for all i this is the

conventional Z-transform, but for non-vanishing (i the appropriate transform is given by

a Newton-series expansion (see Lev-Ari and Kailath (1990); Ackner, Lev-Ari and Kailath

(1990b)).

The relation between recursive layer peeling and the factorization of matrices is now

well understood (see Section 2, as well as Lev-Ari and Kailath (1984), Bruckstein and

Kailath (1987)); it holds even for matrices with the generalized displacement representa-

tion (3), viz.,

d(Z, Z)R = GJG* (14)

where G denotes the matrix of coefficients of the power-series expansion of G(z), (see,

e.g., Lev-Ari and Kailath (1986)). Furthermore, it follows that for every d(z, w) of the

form (4) and for every (finite) matrix R,

In {d(Z, Z)R} = In {d(Z, Z)R-} (15)

where the reversed matrix R-4 is obtained by transposing R - 1 with respect to the anti-

diagonal, namely

1 1 (R-)T (16a)
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where the superscript T denotes the conventional (non-Hermitian) transpose, and I is

the anti-diagonal unity matrix, viz.,

0
.(16b)

0

The fundamental result (15) implies that R and 0 have the same displacement struc-

ture, and therefore that there exists a matrix H such that

d(Z, Z)R = HJH* (17)

It does not tell us, however, how to obtain H or what is its corresponding cascade model.

It has been shown in a limited context (and by fairly lengthy arguments) that the cascade

model for 0 is obtained by reversing the order of the layers in the cascade model for

R (Lev-Ari and Kailath (1984)).

One of the advantages of the state-space approach is that it provides a direct con-

nection between the representations of R and 0.-. Indeed it follows directly from (11)

that

( A B ) R-1 0)(A B )(R-1 0)

Therefore we can obtain an explicit characterization of the state-space model for R- ,

viz.,
(A ]C D -)(Al i0 J D~ =( R -  00 J(18a)

where T

0 1 C D 0
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Notice that A A and D DT. The corresponding transfer function is

D + C(z-I - X)' = DT + BTI(z-'I - IATi)-1iCT = [D + C(z-'I - A)-'BIT

and, therefore,
+ C(z-1 - A)- 1  = OT(z) ... oT(Z)(19)

which establishes in a direct manner the fact that the cascade model for R-h is obtained

by reversing the order of the layers (and taking the transpose of each 0,(z)) in the cascade

model for R. This makes it possible to reconstruct C from the cascade model obtained

for {A, B} and, consequently, to obtain explicit expressions for R - 1 (i.e. , Gohberg-

Semencul type formulas) as well as solutions of linear equations involving R. In fact,

our nev. cascade synthesis method gives rise to two new algorithms for the calculation

of C for all matrices with a displacement structure. In the particular case of Toeplitz

matrices one of these coincides with the well-known Levinson algorithm, while the other

is entirely new.

The state-space approach has also been extensively used in the solution of the Nevanlinna-

Pick interpolation problem, which arises, among other applications in the context of

model-order reduction. The objective of model-order reduction is to approximate a given

impulse response {hk} by a rational stable transfer function3

b(z) 00 ^ _.h-z = E 'k (20)
k=O

of a prescribed order. It has been shown that when the quality of approximation is

measured by the so-called Hankel norm (applied to the difference between hk and hk)

then hk - hk is the causal part of the impulse response of a certain non-causal filter that

arises in the following interpolation problem (Genin and Kung (1981)):

Given a stable and causal impulse response {hk} find a function f(z) with r

poles (or less) within the unit disc and with the least possible infinity-norm

3IIere we shall maintain the convention that %(z) is a first-order matrix polynoniial in z, while ft(z)

is nevertheless defined as a power series in z- 1.
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Ilfi1oo such that, for i= 1,2,.. .,n

f(()= lim {B(z)H(z)}z-c¢i

where

H(z) = Z hkZk
k=O

is the transfer function associated with the given impulse response, {,} are

the poles of this transfer function (all of which are within the unit disc) and

B(z) is the Blaschke product determined by these poles, i.e.,

B(z) 1z (21)

The desired reduced-order transfer function H(z) is obtained via

ff(z) = H(z) - causal part of B(z) (22)

If H(z) is a matrix function (corresponding to a MIMO system) then so are fT(z) and

f(z); in this case {(j} are the Smith-MacMillan poles of H(z).

Though f(z) can be determined via the Nevanlinna-Pick procedure, it has become

customary to solve this problem via the state space approach. Starting with a state-

space model {A, B, C, D} for the given impulse response one obtains first a balanced

realization for the same transfer function and then, applying a transformation described

by Glover (1984), det,-rmines the state-space model {A, B, C, D-} of the reduced-order

transfer function ff(z).

The preference for working in the state-space domain has been, at least partly, mo-

tivated by the lack of efficient computational procedures fur the matrix Nevanlinna-Pick

problem. The standard procedure for solving this problem (see, e.g., Delsarte, Genin,

and Kamp (1979)) requires computationally-intensive matrix operations. The tangential

Schur algorithm of Dewilde and Dym allows a significant reduction in computational

requirements (though, strictly speaking it does not apply to the case of functions with
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poles within the unit circle). A further simplification would be achieved if our tangential

Schur algorithm can be generalized to arbitrary {(,}; currently it applies only to (, = 0

for all i. Since our procedure involves only scalar operations and determines the matrix

function f(z) directly from the given impulse response H(z), it can provide an attrac-

tive alternative to the current state-space method for solving the model-order reduction

problem.

5. WAVELET REPRESENTATION OF RANDOM PROCESSES

Wavelet representations of deterministic functions have recently become an area of active

research in a variety of disciplines. Applications have been found in the fields of Math-

ematics (Mallat (1989)), Physics (Daubechies, Grossman and Meyer (1986)), Numerical

Analysis (Glowinski et al. (1990)) and Signal Processing (Mallat (1989)). However, rel-

atively few results are available for the properties of wavelet representations of random

processes, the primary difficulty being that the existing theory of wavelets has been ex-

clusively developed in the context of L 2(JR). We have shown that wavelet representations

can be extended to random processes with either finite energy or finite power. We have

also shown that periodically-correlated processes, namely processes with periodic statis-

tics, give rise to wavelet representations with periodic correlation structures (Genossar,

Goldburg, Lev-Ari and Kailath (1990)).

The wavelet representation at resolution level I of a function f E L2 ( a) is

1-1

f1(t) = ao,kO,k(t) + E E bm,km,k(t), 1 > 0 , (23a)
kEZ m=OkEZ

where 0(t) is a wavelet function and 0(t) is a closely related function known as the scaling

function associated with the wavelet 0(t). Dilations and shifts of these two functions,

viz.,

0,k(t) :=2/2 (2't - kP) , qik(t) := 2/2 0(2't - kP), (23b)

give rise to a family of mutually orthonormal functions. Consequently, the coefficients of
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the representation (23a) are given by inner products, viz.,

bt,k := (f, l),k) and a0,k := (f, 0o,k). (23c)

Convergence results

We have shown (in Genossar, Goldburg, Lev-Ari, and Kailath (1990)) that for wavelets

with finite support the representation at resolution level I is well defined even for certain

processes that are not members of L2(JR) and, in particular, for processes with finite

power. Moreover, the l-th level approximation j 1(t) converges to the original function in

the following sense: For any compact interval I C IR,

f If ,) (t)12 dt - 0, as I --+ oo (24)

For wavelet representations of random processes, whether of finite energy or of finite

power, we use the same definition as equation (23). Here too, we have shown that the

coefficic'ats and approximations are well defined. The corresponding convergence results

are expressed in terms of mean square errors. For random processes with finite energy

we have shown that

lim J IX(t) _ i(t)12}I dt = 0 (25)

For wavelet representations of random processes with finite power (and using wavelets of

compact support) we have shown that for any compact interval I

£i ,s {Ixwt - i 1(t)12 dt = 0 . (26)

Periodically-Correlated Processes

Periodically-correlated processes provide a particularly interesting example of wavelet

representations for random processes. A periodically-correlated process with period P

(also referred to as a cyclostationary process) is a random process {x(t) ; -o < t < cc}
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with finite second moments, whose mean and autocovariance functions satisfy the condi-

tions:

s {x(t)} = £ {x(t + P)} (27a)

r(t, s):= E {x(t)x*(s)} = r(t + P, s + P) (27b)

The wavelet representation of this process gives rise to a filter-bank model (Fig. 7).

period P q o,o(t)
period P k O,O(t) 4 (t)t

b1,k 1 Ot))

period P"

b2,4k+3 
,(t)

period 
P

Figure 7. A Filter Model for Periodically-Correlated 
Processes

The summation of the outputs of the 2' wavelet filters at resolution level 1 yields .4(t),
the detail signal at level 1. We have shown that if x(t) is a periodically-correlated 

process
with period P, then all input sequences to this filter-bank model, namely the sequence

okas well as the sequences b,,2:k T, 0 < , 0 r < 2'- 1 (for fixed 1, r), are jointly wide-
sense-stationary 

in the index k (see Genossar, Goldburg, Lev-Ari, and Kailath (1990)).
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